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Depth estimation can be used for 3D reconstruction.

Overview

Challenges
Online – no future information is available,

Dynamics – camera motion, object motion and deformation.

Temporally consistency has been largely overlooked. 

Consistency is critical for applications such as mixed reality, 

as jitters in depth estimates corrupt visual quality.
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Per-frame networks

Consistent Online Dynamic Depth (CODD) framework is 

developed to mitigate the above challenges.

Consistent Online Dynamic Depth Framework

Result

Metrics
EPE – per-frame depth accuracy.

𝑑GT − 𝑑pred

TEPE – temporal depth consistency, capturing 

consistency of fast-moving objects.
| 𝑑GT,𝑡 − 𝑑GT,𝑡−1 − 𝑑pred,t − 𝑑pred,𝑡−1 |

TEPEr – relative temporal depth consistency, 

capturing consistency of static objects.
| 𝑑GT,𝑡 − 𝑑GT,𝑡−1 − 𝑑pred,t − 𝑑pred,𝑡−1 |

𝑑GT,𝑡 − 𝑑GT,𝑡−1

Experiments
HITNet [1] is used as the per-frame stereo network.

Our fusion network is compared against classical 

Kalman Filter algorithm [2]. 

SceneFlow

CODD performs better by up to 31% for temporal 

depth consistency and performs on par for per-

frame depth accuracy.

Kalman filter CODD (Ours)

[1] Tankovich et al. Hitnet: Hierarchical iterative tile refinement network for real-

time stereo matching. CVPR 2021.

[2] Kalman. A new approach to linear filtering and prediction problems. JFE 1960.
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Qualitative Results

KITTI Depth KITTI 2015Tartan Air

CODD produces temporally consistent depth for dynamic scenes in an online setting. 
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𝐦: memory state, per-pixel semantic and disparity estimates
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