

# Temporally Consistent Online Depth Estimation in Dynamic Scenes

**Zhaoshuo Li**<sup>1</sup>, Wei Ye<sup>2</sup>, Dilin Wang<sup>2</sup>, Francis X. Creighton<sup>1</sup>, Russell H. Taylor<sup>1</sup>, Ganesh Venkatesh<sup>2</sup>, Mathias Unberath<sup>1</sup>

<sup>1</sup>Johns Hopkins University <sup>2</sup>Reality Labs, Meta Inc.

**Overview** 

**Depth estimation** can be used for 3D reconstruction.

**Temporally consistency** has been largely overlooked. Consistency is critical for applications such as mixed reality, as jitters in depth estimates corrupt visual quality.

#### Challenges

Online – no future information is available,

Optimized Dynamics – camera motion, object motion and deformation.

**Consistent Online Dynamic Depth (CODD)** framework is developed to mitigate the above challenges.



## **Consistent Online Dynamic Depth Framework**

# CODD produces temporally consistent depth for dynamic scenes in an online setting.



 $(- \circ)$ 

**m**: memory state, per-pixel *semantic* and *disparity* estimates

# Result

## **Metrics**

EPE – per-frame depth accuracy.  $d_{\rm GT} - d_{\rm pred}$ 

TEPE – temporal depth consistency, capturing consistency of fast-moving objects.

 $|(d_{\text{GT},t} - d_{\text{GT},t-1}) - (d_{\text{pred},t} - d_{\text{pred},t-1})|$ 

TEPE<sub>r</sub> – relative temporal depth consistency, capturing consistency of static objects.  $|(d_{\text{GT},t} - d_{\text{GT},t-1}) - (d_{\text{pred},t} - d_{\text{pred},t-1})|$ 

 $\left| d_{\mathrm{GT},t} - d_{\mathrm{GT},t-1} \right|$ 

#### **Qualitative Results**





#### **Experiments**

HITNet [1] is used as the per-frame stereo network. Our fusion network is compared against classical Kalman Filter algorithm [2].

**CODD** performs better by up to 31% for temporal depth consistency and performs on par for perframe depth accuracy.







40

50

#### [1] Tankovich et al. Hitnet: Hierarchical iterative tile refinement network for realtime stereo matching. CVPR 2021. [2] Kalman. A new approach to linear filtering and prediction problems. JFE 1960.





